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ABSTRACT

Uncertainty information from ensemble prediction systems may enhance and
extend the suite of tropical cyclone (TC) forecast products. This article will review
progress in ensemble prediction of TCs and the scientific issues in ensemble system
development for TCs. Additionally, it will discuss the needs of forecasters and other
users for TC uncertainty information and describe some ensemble-based products
that may be able to be disseminated in the near future. These proposals are the
starting point for a community-wide discussion of how to leverage ensemble-based

uncertainty information for TC prediction.

CAPSULE:

Ensemble prediction for tropical cyclones is rapidly maturing. Some potential new

tropical cyclone uncertainty products are proposed.



1. Introduction

Uncertainty is inevitable in any weather forecast, a consequence of chaotic
growth of initial condition errors (Lorenz 1996) and model imperfections.
Quantifying this uncertainty may be particularly beneficial for tropical cyclone
forecasts. For example, rather than assuming some standard 225-km position
error! for a 3-day forecast, a reliable uncertainty estimate of 150 km in one
circumstance and 300 km in another should facilitate informed case-by-case
decisions on the extent of coastline evacuation (Fig. 1). Studies have shown that
users prefer receiving uncertainty information rather than having that information
hidden from them (Morss et al. 2008). When no uncertainty information is
provided, users tend to estimate the uncertainty on their own anyway (Joslyn and
Savelli 2010). Better decisions are made when reliable uncertainty information is
provided (Joslyn et al. 2007, Nadav-Greenberg and Joslyn 2009), and users are more
likely to use marginal forecasts and become more fault-tolerant of forecast misses

when the expected error is quantified (LeClerc and Joslyn 2009).

To provide weather-dependent uncertainty estimates, ensemble prediction
techniques have been widely adopted. Multiple, parallel forecast simulations are
typically generated from slightly different initial conditions. Increasingly, the
different member forecasts may also incorporate stochastic dynamics, different
parameterizations, or may even use different models in order to also estimate the

uncertainty contributed by model imperfections.

1 An estimate chosen arbitrarily for purpose of illustration.



Even before the advent of ensemble prediction, some probabilistic
information has been provided for hurricane forecasts. For example, in 1983 the
National Weather Service (NWS) implemented quantitative products that provided
“strike” probabilities of tropical cyclones (TCs) tracks coming within 60 nautical
miles (111 km) of specified coastal locations (Sheets 1985). Beginning in 2006,
these were replaced with more general surface wind probability products that
include information about the uncertainty in the track, intensity and wind structure
forecasts (DeMaria et al. 2009). The original track probabilities and the more recent
wind probability products are primarily statistically based, where the uncertainty
information is determined from error statistics of operational track, intensity and
structure forecasts from previous years. In 2010, a small step toward incorporating
real-time ensemble model-based information was initiated. In particular, the track
error distributions that are utilized to generate the probabilities are being stratified
based on the spread of the tracks from several deterministic forecast models

(Kidder et al. 2009).

An advantage of the current statistically based NWS TC probability products
is that they provide an accurate measure of the average uncertainty in the
operational tropical cyclone forecasts. A disadvantage is that they provide very
little information about an individual forecast situation, especially with regard to
intensity and structure uncertainty. Conceptually, providing situation-dependent
uncertainty forecasts based on ensembles appears to be straightforward. However,

uncertainty estimates that are formulated directly from current-generation model-



based ensembles may be overly confident, offering unrealistically narrow range of
solutions and often biased uncertainty estimates. This may be a consequence of one
of many ensemble system deficiencies. The method of initializing the ensemble may
not fully represent the analysis uncertainty and the important growing error
structures, the ensembles may be based on models that have significant
imperfections, and the ensemble system may treat some forecast processes as
deterministic rather than stochastic. These may be addressed through ensemble
system improvements and/or post-processing using past forecast cases and

observations.

As these ensemble systems are improved and are able to provide
increasingly reliable TC uncertainty guidance, TC product developers should be
ready to provide visually effective ensemble-based forecast products to forecasters,
emergency managers, broadcasters, the media, and other users. After briefly
reviewing some of the scientific challenges related to ensemble prediction of TCs
and the current suite of uncertainty products and tools (section 2), this article will
discuss some possible ensemble-based products that could be developed in the next

several years (section 3) and provide conclusions (section 4).

2. The current state of probabilistic prediction, probabilistic hurricane

products, and their use.

a. The evolving science of ensemble numerical weather prediction.



As specific as we might wish the forecasts to be, the rapid growth of errors in
numerical forecasts will inevitably constrain the potential amount of certainty in the
forecasts. The constraints vary with the scale of the phenomena. Heavy rain
associated with individual thunderstorms may be predictable in a TC for only a
fraction of an hour; the eye wall size and asymmetries for less than a day; the
synoptic-scale environment for perhaps a week. No matter what ensemble system
improvements are implemented, the rapid growth of errors will defeat attempts to
predict much detail beyond these time ranges (Lorenz 1969, Tribbia and
Baumhefner 2004). Still, during the time period while forecast errors are growing
but have not yet saturated, ensembles are expected to provide the case-dependent
estimates of that uncertainty. What are the challenges to improving ensemble

predictions for TCs?

Concerning the initialization of ensembles in the tropics, the ensemble
Kalman filter (EnKF; e.g., Houtekamer and Mitchell 1998, Hamill 2006) is a
particularly promising approach that is being explored. The EnKF may be able to
provide sets of initial conditions that have reduced error, appropriate spread, and
more realistic TCs in the initial conditions. The EnKF is being demonstrated for TCs
with global models (Hamill et al. 2011), and nested high-resolution regional EnKFs
are being developed for TCs (Zhang et al. 2009, Wu et al. 2010, Torn 2010).
Researchers are working with variational data assimilation experts at the National
Centers for Environmental Prediction (NCEP) to hybridize the EnKF with its
variational data assimilation system (Kleist et al. 2009). Additionally, the U.S. Navy

has recently updated their global data assimilation to a 4D-Var algorithm (Xu et al.



2005), and their operational ensemble initialization method was changed to a
“banded” ensemble transform technique (McClay et al. 2010), both of which have
improved TC track forecasts. Another approach to TC ensemble initialization is the
use of diabatic singular vectors (Puri et al. 2001), used at the European Centre for

Medium-Range Weather Forecasts (ECMWF).

An equally challenging problem in ensemble predictions is how to deal in
scientifically sound ways with the significant errors introduced by model
imperfections. Of course, some errors are introduced by the limited resolution at
which ensembles can be conducted (Gentry and Lackmann 2010), and the use of
limited-area domains can suppress the realistic growth of differences between
members (Nutter et al. 2004) and affect the distribution of convection (Warner and
Hsu 2000). However, large-domain, high-resolution ensembles are not currently
computationally feasible on current generation production computers. Further,
parameterizations of sensitive TC processes such as sea spray (Gall et al. 2008) are
based on a limited understanding, in part due to lack of observations. We also lack a
basic understanding of the cloud particle physics and aerosols in TCs. Intensity
predictions are very sensitive to model coefficients such as the horizontal mixing
length (Bryan et al. 2010), where the range of appropriate values is not well known.
Ensemble predictions may also inherit many of the deficiencies of deterministic
models, such as over-forecasting of TC genesis and difficulties in predicting rapid

intensity changes (Kaplan et al. 2010).



Three general approaches can be used to deal with systematic errors in an
ensemble prediction system. The first is to improve the forecast system, perhaps
increasing the resolution, improving the fidelity of parameterizations, generating
the ensembles with larger or global domains, and appropriately coupling predictive
models for the state components such as the ocean and atmosphere. Such work is of
course occurring; for example, NCEP has recently upgraded the resolution of their
global ensemble forecast system to T190 (~95 km grid spacing at 25°N), and the
deterministic model was upgraded in summer 2010 to T574 (~32 km grid spacing
at 25°N), with upgrades to the radiative transfer code, shallow convection, planetary
boundary layer (PBL), and deep convection routines. ECMWF recently upgraded
their ensemble prediction system to T639 (Richardson 2010), which significantly

reduced TC intensity biases.

The second general approach is to introduce stochastic effects to represent
model uncertainty in a physically realistic fashion. One underlying problem is that
many of the parameterizations are formulated deterministically; given the same
large-scale input, the same response of sub-grid forcing upon the resolved scales is
always predicted, even though a range of responses is plausible. Techniques that
are being used in operations or are being tested include perturbing the
parameterized tendencies with random numbers or structured noise (Buizza et al.
1999, Palmer et al. 2009), using an ensemble system with multiple
parameterizations (Charron et al. 2010), and introducing stochastic aspects into
parameterizations (Lin and Neelin 2002, Teixeira and Reynolds 2008, Plant and

Craig 2008). At several centers, a “stochastic backscatter” scheme has been



implemented to stimulate an upscale energy cascade that can be lost due to
excessive numerical dissipation (Shutts 2005, Berner et al. 2009, Charron et al.
2010). Collectively, this is an area where much more research is needed, for many
of the parameterizations in models are still deterministic, and many of the
approaches taken currently are ad-hoc (i.e., they increase spread, but not

necessarily for scientifically defensible reasons).

The third approach is to post-process. A simple approach may be to combine
output from existing models. Goerss (2007) has shown the value of a multi-model
consensus, if that is available. If various ensemble systems provide estimates of
track with relatively independent systematic error characteristics, a consensus
should provide some improvement. This technique has been used, at first
subjectively, by forecasters at the National Hurricane Center (NHC) for more than a
decade and currently provides among the best automated track guidance

(Rappaport et al. 2009).

Another type of post-processing consists of applying statistical corrections
based on discrepancies between past forecasts and observations. Krishnamurti et al.
(2006) discussed the “superensemble” concept, combining regression-corrected
ensemble guidance. When making statistical corrections, especially for a
phenomena like a TC that may impact a given location only once every 5-10 years, it
is helpful to be able to examine the characteristics of numerical guidance from
similar past events. Reforecasts, a database of past forecasts using the same model

and assimilation system, can provide just that (Hamill et al. 2006). ECMWF now



operationally generates a 5-member, real-time reforecast once weekly, creating
forecasts for the past 18 years (Hagedorn 2008, Hagedorn et al. 2010). For TCs,
they use real-time reforecasts to calibrate their forecasts of TC genesis (Vitart et al.
2010). An even more extensive reforecast data set, with forecasts more often than

once weekly, may be helpful for TC calibration.

b. Current probabilistic forecast tools and products.

The NHC currently uses a variety of forecast tools, some of which provide
probabilistic information. Several of their forecast products contain probabilistic

elements. We briefly review these tools and forecast products.

Among the forecaster tools, NHC can examine a “poor-person’s” ensemble
consisting of guidance from a range of deterministic models, including limited area
models such as the GFDL model (Bender et al. 2007) and HWRF (Bao et al. 2010).
NHC also has access to global deterministic forecasts from the GFS, the U.S. Navy’s
Operational Global Atmospheric Prediction System (NOGAPS; Peng et al. 2004); the
UK Met Office global model (Bowler et al. 2008, 2009) and the ECMWF model
(www.ecmwf.int/research/ifsdocs/). Additionally, they regularly examine
ensemble guidance from the NCEP Global Ensemble Forecast System (GEFS) and the
ECMWEF ensemble system. Less attention is paid to ensemble output from other
international centers. Given the errors associated with purely dynamical guidance,
especially with intensity, NHC forecasters also routinely examine a variety of multi-
model consensus forecasts (e.g., Goerss 2007), and they use statistical-dynamical

intensity models such as SHIPS (Statistical Hurricane Intensity Prediction Scheme;
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DeMaria et al. 2005) and LGEM (Logistic Growth Equation Model; DeMaria 2009) for
intensity forecast guidance. Because none of the intensity forecast models reliably
predict rapid intensification, NHC also uses a Rapid Intensity Index (RII). The RII
uses satellite observations and the NCEP global model forecast to provide a

quantitative estimate of the probability of a rapid intensification in the next 24 h.

The NHC produces real-time products to convey the current and forecast
location, intensity (wind speed) and size of TCs and their precursors, as well as
associated effects (e.g., storm surge). Textual products with uncertainty information
(see online appendix A for examples) include a tropical weather outlook, which
provides probabilities of TC formation in the next 48 h, and a TC discussion
providing forecaster reasoning and alternate scenarios based on model guidance
diversity. Surface wind-speed probabilities based on a Monte-Carlo approach that
considers on the order of 1,000 realistic track, intensity and size possibilities
constitute another text product, provided in tabular format. Graphical forecast
products include some with probabilistic elements: surface wind speeds, storm
surge heights, a coastal watch/warning, and 3- and 5-day cone of uncertainty for TC
center position (see online appendix A for examples). Local NWS weather forecast

offices provide additional products (not shown).

3. Recommendations for ensemble-related product development.

We propose some ensemble-related products that could be helpful to

emergency managers, the media, and especially to forecasters.
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Emergency managers and the media are likely to prefer products that will be
visually intuitive, that will help them communicate uncertainty information to their
audiences. Simple and easily explainable products are preferable, given their
customers will be more familiar with deterministic products. For example, one
modest change might be to enhance the deterministic products with some
confidence index (low/medium/high) based upon ensemble uncertainty estimates.
For newer and more complex graphics, training may be necessary before users
embrace them. Explanatory web pages could be created and associated with the
new product web pages. Additionally, through conferences and training facilities
such as COMET (the Cooperative Program for Operational Meteorology, Education,
and Training), advanced users could be trained in how to interpret the new

probabilistic guidance.

Below, we concentrate more on describing potential new uncertainty
guidance for forecasters. As opposed to emergency managers, these products are
more interpretive, designed to help forecasters understand the potential situational
uncertainty rather than to convey it simply to end users. However, many beyond
the forecast community may also be interested in such graphics. Should these
experimental ensemble-based products be disseminated beyond the ranks of
government forecasters, they should include appropriate disclaimers. They may
note, for instance, that these products represent experimental guidance that may
not produce reliable probabilities, and that they should not be considered “official”

forecasts.
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a. Intensity products.

The forecasters’ greatest perceived need is for improved intensity-related
products, including the probability distribution of intensity change. This presents a
considerable challenge given the current difficulties that ensemble systems (and

deterministic models) have with predicting intensity change.

A relatively straightforward approach that should be investigated to improve
guidance for forecasters would be to incorporate ensemble input into existing
statistical models of intensity changes such as the LGEM. The open-water
component of the LGEM consist of a differential equation that predicts intensity

changes, of the form

dv v Y
——KV—ﬁV(V—j ) (1)

dt

where V is the predicted maximum wind speed, Vi is the maximum-potential
intensity wind speed, estimated by this model using sea-surface temperature (SST)
information (DeMaria and Kaplan 1994, Whitney and Hobgood 1997) appropriate

to the forecast track. k, 3, and n are parameters that were estimated through a

minimization process using a long climatology of observed hurricane track data and
associated environmental information such as vertical shear and convective
instability. A relatively simple method for providing an ensemble of intensity
change forecast estimates would involve producing one intensity forecast for each

forecast track of an ensemble. The LGEM output intensity change estimates would
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thus differ as the different tracks encountered different SSTs and atmospheric
environments. An obvious difficulty with this approach may be that the ensemble of
track forecasts will not realistically represent the variety of possible tracks; the
mean position may be biased, and there may be insufficient diversity among track
forecasts. Another limitation is that, although LGEM is skillful in terms of average
forecast errors, it does not perform well with regard to rapid intensification.
However, this method is computationally inexpensive, is easy to implement and

would provide some initial experience with intensity forecast model ensembles.

Were a reforecast data set available (e.g., Hamill et al. 2006), forecast track
statistics could be generated for a long period of time from a stable model. This
approach may permit systematic track errors to be estimated and corrected from
real-time forecasts. It may also be possible to train a model like LGEM not using
analysis data (a “perfect-prog” approach), but rather using forecast data (a “model
output statistics” approach), and in this way account for potential biases in forecasts

of the environmental information.

Other products could also convey predictive information related to intensity
to forecasters. Figure 2 provides a synthetic example of how a spaghetti plot of
tracks could be augmented with intensity-related information; included on this plot

is analyzed tropical cyclone heat potential (TCHP), defined as

2(Dys)
TCHP=C, [ (T(z)-26)pdz
& (2
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where C,, is the specific heat capacity of sea water, T(z) is the temperature in Celsius

at depth z, p is the density of seawater, and the integration is performed from the

depth of the 26°C isotherm, Dzs, to the ocean surface. Values over 90 kJ/cm? are
typically considered favorable for enhanced TC intensification. The arrows
associated with each track position represent the associated vector 850-200 hPa
wind shear. Also displayed are the forecast central pressures. A visual display like
this permits a forecaster to see the interactions of several variables that may be
related to intensity. In this case, for example, the wind shear is somewhat weaker
and the TCHP larger at 48 h to the southwest, suggesting that if the storm takes a
more southwesterly course, it may be stronger than a storm moving farther north.
In this case, the intensity difference is also reflected in the model-forecast central

pressure estimates.

“Meteograms” of the ensemble distribution could also be produced for
intensity-related storm parameters, such as shear, mid-level moisture, instability,
maximum wind speed, as illustrated in Fig. 3. Another possibility would be the
creation of ensemble-derived probability maps of important variables, which might
depict, for example, the probabilities of exceedance of critical variables, such as RH
<50% at 500 hPa, or 850-200 hPa vertical shear > 15 kts (~7.7 m/s). Finally, were
areforecast dataset available, an “Extreme Forecast Index” (LaLaurette 2006) could
be created for intensity forecasts, representing how the ensemble of forecast

intensities compare to the climatological distribution of forecast intensities.

b. Tropical cyclogenesis products.
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Products to help predict the relative likelihood of TC genesis are desirable.
However, given the common over-forecasting of genesis in numerical models, the
potential skill of such products may be marginal, at least until reforecasts are
available to estimate the climatological frequency of genesis from past forecasts.
Recently, ECMWEF staff has developed experimental guidance for the probability of
tropical cyclogenesis; these are calibrated using the forecast climatology derived
from their 20-year, once-weekly reforecast data set (personal communication, D.
Richardson, 2010, and Hagedorn 2008). Figure 4 illustrates how ECMWF
represented the relative likelihood of TC genesis in several basins in their real-time

forecast compared to the frequency of genesis determined from past forecasts.

Even without reforecasts, it may still be helpful to be able to evaluate
numerical guidance of TC genesis from ensembles. This might include tracker
output of model-generated storms and genesis probabilities estimated from the
ensemble in geographical areas, especially at the 48-hour and 120-hour lead times.
Another possibility is to examine whether a statistical model of genesis
(Schumacher et al. 2009) incorporating ensemble genesis information might

provide skillful guidance.

c. Structure products.

Uncertainty information is desired for storm structure as well. Structure
aspects might include storm size and average wind radii at various thresholds in

different storm quadrants. Possible products include ensemble averages of the
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radius of the outermost closed isobar (OCI), which provides one possible measure of
overall storm size. Another product may be the ensemble-mean predictions of 34,
50, and 64-kt (15.4, 25.7, and 32.9 ms'1) wind radii in different quadrants, where the
ensemble of storms is relocated to a common position. Probability distributions of

the OCI and wind radii might also be useful.

d. Track products.

In addition to the possibilities indicated in 3.a above for augmenting track
information with intensity related variables, other track-related products may be
useful. For example, track information could incorporate lagged ensemble data and
improved anisotropic, non-stationary estimates of the cone of uncertainty (Fig. 5).
Such a plot could be further enhanced if the older forecasts had been subjected to
quality control to eliminate or de-weight prior forecasts that did not match recent
observed positions. Perhaps cluster analysis could be used to identify ensemble
members for which storms have similar tracks and create composite forecast fields
for these clusters. For example, if the tracks exhibit some multi-modality, the

synoptic pattern associated with each mode could be examined.

e. Associated phenomena: storm surge, winds, rainfall, and tornadoes.

As ensembles are improved and perhaps post-processed using reforecasts,
they may provide more reliable track, intensity, and storm size estimates. These in
turn may permit probabilistic guidance to be generated for many important storm-

related effects. For example, storm surge probabilities might be generated by
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driving surge models like SLOSH (Sea, Lake, and Overland Surges from Hurricanes;
Houston et al. 1999) with ensemble guidance. Similarly, post-processed ensemble
guidance may provide improved estimates of precipitation from land-falling TCs
(Hamill and Whitaker 2006) or from predecessor rain events (PREs; Galarneau et al.
2010). Statistical models may also make it possible to estimate tornado likelihood
based on the environmental characteristics. Additional probabilistic forecasts
could be generated for winds above critical thresholds such as tropical-storm or

hurricane-strength and could provide information on the timing (onset, duration).

f- Guidance for locations of supplemental observations

Ensemble-based techniques may be useful for determining the most useful
locations for supplemental observations. The observations may be dropsondes
from reconnaissance aircraft or, in the future, the processing of higher-density
cloud-track winds or satellite radiances. Typically, an ensemble-based targeting
algorithm considers how much the forecast uncertainty (usually measured in this
case as some function of the ensemble spread, i.e., the standard deviation about the
mean) would be reduced as a result of the reduction in analysis-error variance in an
ensemble due to the assimilation of extra data. These techniques are promising but
are limited in their utility by the lack of calibration of the ensemble and the

assumption of linear error growth (Majumdar et al. 2006; Reynolds et al. 2010).

4. Conclusions.
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Studies indicate that users are able to make better decisions when provided
with relevant uncertainty information. Ensemble prediction techniques for
generating such information for TCs are rapidly increasing but are still subject to
biases. As ensembles improve, the weather forecast community is planning for how
to incorporate more ensemble-based uncertainty information into the forecast
process and how TC uncertainty can be conveyed to forecasters, emergency
managers, the media, and the public. This article discussed some preliminary ideas
for how ensemble information can be interpreted and used more extensively.
Special attention was paid to new ensemble products for intensity forecasting,
which have not improved as much as track forecasts over the past few decades. Our
product recommendations assume that forecasters will be interested in products
that are more diagnostic in nature, that can provide additional information about
the range of possible outcomes. Emergency managers and the media may be more
interested in user-friendly graphics that could be understood readily by their

customers.

This article is meant as a starting point for discussion, a way of engaging the
community in thinking more broadly about how ensemble predictions can be
leveraged in the forecast process. We welcome your contributions to this

discussion.
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LIST OF FIGURE CAPTIONS

Figure 1: Conceptual illustration of how situationally dependent uncertainty such
as provided by ensembles in track forecasts can improve decision making. In panel
(a), the “cone of uncertainty” for a hurricane, estimated using the errors of prior
forecasts, provides ambiguous information as to whether to evacuate a city. In
panel (b), in this case a hypothetical calibrated ensemble is suggesting a narrower
cone of uncertainty, indicating a decreased threat and implied commensurate
actions for the city. Conversely, in panel (c), the uncertainty is much larger and
encompasses most of the city, suggesting a potential different course of actions for

the city.

Figure 2: [llustration of a potential display of intensity-related information. A
(synthetic) 10-member ensemble forecast of tracks are shown, with 0, 24, and 48-
hour positions denoted by the dots. The underlying contours denote the analyzed
tropical cyclone heat potential, as defined in the text; the wind barbs denote the
vertical (200-850 hPa) vertical wind shear, measured in knots (1 knot =.5144 ms-
1), The two numbers plotted over top the cyclone position denote the model-

forecast mean sea-level central pressure, measured in hPa minus 900.

Figure 3: Synthetic example of a potential “meteogram”-style plot of intensity-
related information from an ensemble system. Each panel provides the ensemble-

mean forecast (solid line and dots), while the blue bars denote the lowest and
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highest values from the ensemble. White lines denote the 20t and 80t percentiles

of the distribution.

Figure 4: An example of ECMWF’s extended-range forecast of tropical cyclogenesis,
here for the week of 6-12 September 2010. Activity is monitored separately in the
various basins, separated by the blue lines. The green bars show the mean number
of TCs predicted to develop during the week 6-12 September (i.e., in each basin
count all new TC geneses in each ensemble members in that 7-day period and
calculate the mean of that number over the ensemble; the actual number is shown
below the green bar). The orange bar (and number) is determined from the

reforecast climate at this time of the year.

Figure 5: Lagged ensemble track forecasts for Hurricane Earl, 2010 from the
GFS/EnKF (see Hamill et al. 2010). Light grey lines denote track forecasts initialized
at 0000 UTC 31 August 2010. Darker grey lines denote track forecasts initialized at
1200 UTC 31 August 2010. Black lines denote track forecasts initialized at 0000
UTC 1 September 2010. Red dots denote positions of ensemble members, with the
large red dot the position of the ensemble-mean member. The ellipse is from a
fitted bivariate normal distribution, with the contour enclosing 90% of the fitted
probability (ibid). Numbers indicate the forecast lead in days corresponding to the

1 September forecast.
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Figure 1: Conceptual illustration of how situationally dependent uncertainty such
as provided by ensembles in track forecasts can improve decision making. In panel
(a), the “cone of uncertainty” for a hurricane, estimated using the errors of prior
forecasts, provides ambiguous information as to whether to evacuate a city. In
panel (b), in this case a hypothetical calibrated ensemble is suggesting a narrower
cone of uncertainty, indicating a decreased threat and implied commensurate
actions for the city. Conversely, in panel (c), the uncertainty is much larger and
encompasses most of the city, suggesting a potential different course of actions for
the city.
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Figure 2: [llustration of a potential display of intensity-related information. A
(synthetic) 10-member ensemble forecast of tracks are shown, with 0, 24, and 48-
hour positions denoted by the dots. The underlying contours denote the analyzed
tropical cyclone heat potential, as defined in the text; the wind barbs denote the
vertical (200-850 hPa) vertical wind shear, measured in knots (1 knot =.5144 ms-
1), The two numbers plotted over top the cyclone position denote the model-
forecast mean sea-level central pressure, measured in hPa minus 900.
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Hurricane Ichabod
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Figure 3: Synthetic example of a potential “meteogram”-style plot of intensity-

related information from an ensemble system. Each panel provides the ensemble-

mean forecast (solid line and dots), while the blue bars denote the lowest and

highest values from the ensemble. White lines denote the 20t and 80 percentiles

of the distribution.
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ECMWEF Monthly Forecast DAY 12-18
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Figure 4: An example of ECMWF’s extended-range forecast of tropical cyclogenesis,
here for the week of 6-12 September 2010. Activity is monitored separately in the
various basins, separated by the blue lines. The green bars show the mean number
of TCs predicted to develop during the week 6-12 September (i.e., in each basin
count all new TC geneses in each ensemble members in that 7-day period and
calculate the mean of that number over the ensemble; the actual number is shown
below the green bar). The orange bar (and number) is determined from the
reforecast climate at this time of the year.
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Figure 5: Lagged ensemble track forecasts for Hurricane Earl, 2010 from the
GFS/EnKF (see Hamill et al. 2010). Light grey lines denote track forecasts initialized
at 0000 UTC 31 August 2010. Darker grey lines denote track forecasts initialized at
1200 UTC 31 August 2010. Black lines denote track forecasts initialized at 0000
UTC 1 September 2010. Red dots denote positions of ensemble members, with the
large red dot the position of the ensemble-mean member. The ellipse is from a
fitted bivariate normal distribution, with the contour enclosing 90% of the fitted
probability (ibid). Numbers indicate the forecast lead in days corresponding to the
1 September forecast.
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